
  

 

 

Optimization of misaligned data processing based on LLVM compiler 

Lingqin Gonga, *, Qinglei Zhoub and Hao Huc 
School of Information Engineering, Zhengzhou University, Zhengzhou 450000, China 

ayouxiangxl01@sina.com, bieqlzhou@zzu.edu.cn, cwitstorm @163.com 

*Corresponding author 

Keywords: LLVM, Directed acyclic graph, misaligned data, Instruction selection 

Abstract: The processing of misaligned data is optimized based on the directed acyclic graph at the 
back end of the LLVM compiler. Implements the LLVM compiler's processing of unaligned scalar 
data and unaligned vector data. The processing and optimization of misaligned data mainly includes 
two aspects: 1. Provides optimized processing of misaligned vector data and scalar data based on 
directed acyclic graph, which solves the problem of misaligned memory access affecting program 
performance. 2. In the LLVM compiler backend instruction selection phase, a custom node 
downgrade process is provided, which enhances the flexibility and reusability of the optimization. 
Test the program containing misaligned data. The maximum speedup of the problem with unaligned 
scalar data is 20.27, the average speedup is 14.49, the maximum speedup of the problem with 
unaligned vector data is 14.01, and the average speedup is 13.61. 

1. Introduction 
LLVM (Low Level Virtual Machine) is a widely used compiler framework developed by the 

University of Illinois [1]. LLVM provides an intermediate representation LLVM IR (Intermediate 
Representation) based on SSA (Static Single Assignment) [2]. 

Memory address alignment requires that when reading and writing data, the destination address 
must be an integer multiple of the number of bytes of the basic data type accessed [3]. On the 
processor side, memory alignment requires that the memory addresses accessed by the processor 
when reading and writing data are aligned [4]. Access aligned memory addresses if and only if A 
mod n = 0, where A is the memory address and n is the width of the fetched data in bytes [5, 6]. 
When a fetch operation is an unaligned fetch, the value of a mod n determines the offset of the 
unaligned address relative to the aligned fetch address. 

A directed acyclic graph is a loopless directed graph. In a DAG, for any node N, there is no 
directed path that starts at N and ends at N [7]. DAG is an important data structure in the computer 
field. Due to its unique topology, DAG are widely used in a variety of algorithm scenarios such as 
dynamic planning, shortest path finding, and data compression [8]. In the LLVM compiler, the 
backend uses a DAG to visualize the backend downgrade process [9, 10]. Instruction selection is an 
important stage of backend degradation. The SelectionDAG generated during the instruction 
selection process is a directed acyclic graph. The node SDNode in the SelectionDAG is the node 
that carries the IR operation or operand [11]. 

The instruction selection through the DAG is a process of converting the LLVM IR into a 
SelectionDAG node (SDNode) of the target instruction. Compiler optimization processing is 
divided into target platform-dependent optimization and target platform-independent optimization. 
Target platform-independent optimization has the advantage of being versatile and not constrained 
by specific platform characteristics. In order to fully exploit the optimization potential of the 
compiler and enhance the generality of the optimization, in the instruction selection stage, a custom 
downgrade processing of the DAG (Directed Acyclic Graph) node is implemented to achieve target 
independence for accessing misaligned data addresses Optimization. 

2019 3rd International Conference on Mechanical and Electronics Engineering (ICMEE 2019)

Published by CSP © 2019 the Authors 229



  

 

 

2. Misaligned data processing strategy 
2.1 Custom degradation of vector data DAG nodes 

A single instruction multiple data (SIMD) processor can perform the same processing on 
multiple data at the same time, and SIMD can efficiently perform a large amount of data level 
parallelism (DLP) processing [12]. SIMD fetch instructions can load or store multiple data items 
with one instruction [13]. By adding the corresponding SIMD memory access instruction in the 
instruction set, the data parallelism in the program is fully utilized, and the performance 
improvement is achieved. In practical problems, when the memory addresses of vector data are not 
aligned, the vectorization of the program will be affected, resulting in a decrease in SIMD 
performance [14]. 

During the process of custom downgrading the load and store nodes of vector data, data offset 
nodes, data splicing operation nodes, misaligned fetch nodes and data flow nodes are used to 
simulate load or store operations. The data offset node is responsible for obtaining and storing the 
offset information of the misaligned data in order to extract and write back valid data from the 
memory unit. The data splicing operation node is responsible for splicing the data to obtain 
complete valid data. The new load and new store nodes are custom load and store nodes after 
degraded processing, and can perform misaligned fetch operations on processed data. After the 
custom downgrade processing is completed, the nodes generated by the downgrade continue the 
downgrade process at the back end and finally generate assembly instructions. The custom 
degradation process of the load node of vector data is shown in Figure 1. 

load

src

dest

new_load new_load

src offset

splice

dest

data stream data stream

 
Figure 1. Vector load node custom degradation processing 

When the vector data type is downgraded, the original load node is downgraded to multiple 
nodes, and multiple nodes generated by the downgrade are processed for implicit misaligned data. 
The src node represents the source register of the load operation, and dest represents the destination 
register of the load operation. The offset node represents the offset of valid data in the memory unit. 
The splice node represents a data splicing operation node. This node splices the loaded data to 
obtain valid data. The data stream represents the data stream nodes in the back end of the compiler, 
and the data stream nodes maintain the data dependency relationship between the custom DAG 
nodes. After the load node of the vector data is subjected to custom downgrade processing, the new 
load node loads the data from the starting address and starting address of the memory unit plus the 
offset memory through two loads. The data stream node passes the data to the data splicing node 

230



  

 

 

splice. The data splicing node splices the data and passes the complete and valid data obtained to 
the superior DAG node. 

2.2 Custom degradation of scalar data DAG nodes 
The custom degradation processing phase of the scalar data DAG node is the same as the custom 

degradation processing phase of the vector data. When the intermediate representation of LLVM 
starts to downgrade through the instruction selection stage based on the DAG, by performing a 
custom downgrade process on the load node and the store node, the custom nodes in the DAG are 
used to complete the loading and storage of misaligned data. The degradation process of the load 
node of scalar data is shown in Figure 2. 

load

src

dest

new_load new_load

src offset

dest

data streamdata stream

extraction extraction

or

data stream data stream

 
Figure 2. Custom downgrade processing for scalar load nodes 

When the scalar data type is downgraded, the original load node is downgraded to multiple 
target-independent nodes. The compiler performs implicit misaligned data processing by degrading 
multiple nodes. The extraction node represents a data extraction node. This node extracts the valid 
data in the memory unit and extracts the valid data bits into an all-zero memory area to ensure that 
the memory unit where the valid data is located has no dirty data bits. The OR node represents a 
logical OR node. This node performs a bitwise OR operation on the data bits in the memory unit of 
the two extraction operations to obtain complete valid data. After the load node of the scalar data 
undergoes a custom downgrade process, the new load node loads the data from the starting address 
and starting address of the memory unit plus the offset address through two loads. The data flow 
node passes data to the data extraction node, and the data extraction node performs extraction 
operations on the data loaded twice and passes the extracted data to the logic OR node through the 
data flow node. The logical OR node performs a bitwise logical OR operation on the two incoming 
operands to obtain complete valid data and passes the valid data to the superior DAG node. 

 
 
 

231



  

 

 

3. Implementation of misaligned data processing technology 
3.1 Vector data misaligned processing implementation 

Taking the load operation of unaligned vector data as an example, the degradation algorithm of 
the custom load node of unaligned vector data is shown in Algorithm 1. 

Algorithm 1: custom degradation processing of misaligned vector load nodes 
Input: src, offset 
Output: dest 
If Op. getValueType () is vector then 
 Case Op.getOpcode () in 
Load) 
    If Op.getAlignment () is false then 
    low←creatNode (src, 0) 
    offset←creatNode (src, offset) 
    low_data←valChain (low) 
    offset_data←valChain (offset) 
    dest←splice (low_data, offset_data) 
  Else 
   Lower Load () 
  End if 
Break 
End case 
End if 
Algorithm one is the pseudo-code for custom downgrade processing of the vector load node. The 

algorithm treats the nodes in SelectionDAG as an operation Op and downgrades the nodes. The 
algorithm uses the getValueType method to obtain the data type and determines whether the data 
type is a vector. If the data type is a vector, a custom downgrade processing flow of the node of the 
vector data type is performed. The algorithm uses the getOpcode method to obtain the operation 
code of the operation, and matches the operation code of the node through the case. If the node is a 
load node, it uses the get Alignment method to determine whether the node is a load operation for 
processing unaligned data. If the data is aligned data, no custom downgrade processing is performed, 
and the load node is naturally downgraded. If the data is misaligned data, two new load nodes are 
created by the cretonne method and two loading operations are performed from the memory unit 
according to the address and offset value. The loaded data is transmitted to the superior DAG node 
through the data stream node. After the data splicing node splice receives the data transmitted by 
the data stream node, it performs the splicing operation on the valid data to obtain the complete 
valid data. 

3.2 Scalar data misaligned processing implementation 
Take the load operation of misaligned scalar data as an example. The degradation algorithm of 

the custom load node of misaligned scalar data is shown in Algorithm 2. 
Algorithm 2: custom degraded processing of unaligned scalar load nodes 
Input: src, offset 
Output: dest 
If Op. getValueType () is scalar then 
Case Op. getOpcode () in 
Load) 
       If Op.getAlignment () is false then 
       low←creatNode (src, 0) 
       offset←creatNode (src, offset) 
       low_data←valChain (low) 
       offset_data←valChain (offset) 

232



  

 

 

       eff_low ←extraction (low_data) 
     eff_offset ←extraction (offset_data) 
     low_val ← valChain (eff_low) 
     offset_val ← valChain (eff_offset) 
     dest←or (low_val, offset_val) 
    Else 
     Lower Load () 
    End if 
Break 
End case 
End if 
Algorithm two is pseudo-code for custom downgrade processing of scalar load nodes. The 

algorithm uses the getValueType method to obtain the data type and determines whether the data 
type is a scalar. If the data type is scalar, the custom downgrade processing flow of the node with 
the scalar data type is performed. The algorithm uses case statements to match node operation types 
through node operation codes. If the node is a load node, it is determined whether the node 
processes misaligned data. A natural degradation process is performed on the load node that 
processes the aligned data. If the data is misaligned, create two new load nodes and perform two 
load operations from the memory unit based on the address and offset values. Pass the loaded data 
to the data extraction node through the data flow node. The data extraction node extracts part of the 
valid data loaded twice into different all-zero memory areas, and passes the extracted data to the 
logic or node through the data flow node. Logic or node performs bitwise OR operation on valid 
data to get complete valid data. 

4. Results 
4.1 Unaligned scalar data test 

Scalar data types include char, short, int, long, float, and double. Data address misalignment is 
closely related to platform hardware characteristics [15]. For sunway processor, the minimum 
granularity of aligned access is four bytes. Addresses of 32-bit data and 64-bit data types need not 
be misaligned. LLVM compilers for sunway processor need misaligned data processing to optimize 
data types including 8-bit and 16-bit data types char and short. 

Compile the following test program and run it on sunway processor. In the program, 
TYPE1={int, long, double, float}, TYPE2={char, short, int, float}. 

Volatile TYPE1 b; 
TYPE2 a []={1,2,3,4,5,6}; 
Void main () { 
For (int i=0; i<1000000000ULL; i++) { 
    b = *(TYPE1 *) (a+1); 
} 
} 
Through the comparison experiments on the optimization of unaligned data processing and the 

optimization of unaligned processing, the optimization effect of unaligned scalar data processing is 
verified. The maximum speedup of the test case is 20.27, and the average speedup is 14.49. The 
experimental results are shown in Table 1 

 
 
 
 

233



  

 

 

Table 1. Test results of unaligned scalar data 

TYPE1 TYPE2 Time before optimization (s) Time after optimization (s) Speedup ratio 
double char 187.20 16.18 11.57 
double float 187.20 16.18 11.57 
double int 187.91 16.19 11.56 
double short 187.20 16.17 11.58 
float char 199.31 15.72 12.68 
float short 197.90 15.80 12.53 
int char 182.30 15.80 11.54 
int short 182.12 15.75 11.56 

long char 183.16 9.70 18.88 
long float 182.89 9.12 20.05 
long int 183.05 9.05 20.23 
long short 183.06 9.03 20.27 
short char 180.91 12.56 14.40 

  Average acceleration ratio 14.49 
The experimental results show that when billions of accesses are made to the misaligned data, 

the maximum acceleration ratio for processing unaligned scalar data is 20.27, and the average 
acceleration ratio is 14.49. 

4.2 Unaligned vector data test 
The vector data types that need to be misaligned in the sunway processor and the LLVM 

compiler include v4f64, v4f32, and v8i32. Compile the following test program and run it on the 
sunway processor. In the program TYPE1= {v4f64, v4f32, v8i32}, TYPE2={int, long, float, 
double}. 

Volatile TYPE1 b; 
TYPE2 a [100]; 
Void main () { 
  For (int i=0; i<1000000000ULL; i++) { 
   b= *(TYPE1 *) (a + 1); 
} 
} 
Through the comparison experiments on the optimization of misaligned data processing and the 

optimization of misaligned processing, the optimization effect of the vector data processing is 
verified. The test case has a maximum speedup of 14.01 and an average speed up of 13.61. The 
experimental results are shown in Table 2. 

Table 2. Unaligned vector data test results 

TYPE1 TYPE2 Time before optimization (s) Time after optimization (s) Speedup ratio 
v4f64 long 199.90 14.64 13.65 
v4f64 double 199.91 14.66 13.64 
v4f32 float 197.20 14.61 13.50 
v4f32 int 197.14 14.64 13.46 
v4f32 long 194.59 14.63 13.30 
v4f32 double 194.67 14.66 13.29 
v8i32 float 205.24 14.65 14.01 
v8i32 double 199.70 14.62 13.66 
v8i32 long 199.90 14.68 13.62 
v8i32 int 204.64 14.63 13.98 

  Average acceleration ratio 13.61 

234



  

 

 

The experimental results show that when billions of accesses are made to unaligned data, the 
maximum speedup of unaligned vector data processing is 14.01 and the average speedup is 13.61. 

5. Conclusion 
This article describes the optimization of misaligned data processing based on directed acyclic 

graphs. Based on the LLVM compiler, it provides a solution for custom downgrading of nodes 
during the instruction selection stage, and optimizes the load and store operations of misaligned 
scalar data types and misaligned vector data types. Based on the DAG, use the custom node 
downgrade process on the LLVM compiler backend to handle load and store nodes for unaligned 
data. 

In the test case of unaligned scalar data, the maximum speedup is 20.27 and the average speedup 
is 14.49. In the test case of unaligned vector data, the maximum speedup is 14.01 and the average 
speedup is 13.61. Through the implementation of custom degraded processing optimization for 
unaligned data in this paper, the LLVM compiler can further utilize the program's data parallelism 
to improve program performance. The next work is to further study the vector data misaligned data 
processing and fully exploit the parallel computing capabilities of sunway processor. 

References 
[1] Lam, Siu Kwan, Antoine Pitrou, and Stanley Seibert. "Numba: An llvm-based python jit 
compiler." Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. 
ACM, 2015. 
[2] Sui, Yulei, and Jingling Xue. "SVF: interprocedural static value-flow analysis in LLVM." 
Proceedings of the 25th international conference on compiler construction. ACM, 2016. 
[3] Ringe, Tushar P., et al. "Data processing apparatus with snoop request address alignment and 
snoop response time alignment." U.S. Patent Application No. 10/042, 766. 
[4] Turner, Andrew Edmund, George PATSILARAS, and Bohuslav Rychlik. "Cache line 
compaction of compressed data segments." U.S. Patent No. 10,261,910. 16 Apr. 2019. 
[5] Han, Woojong, et al. "Apparatus and method to support a storage mode over a cache-line 
memory interface to a non-volatile memory dual in line memory module." U.S. Patent No. 
10,067,879. 4 Sep. 2018. 
[6] Liu, Shaoli, et al. "Cambricon: An instruction set architecture for neural networks." ACM 
SIGARCH Computer Architecture News. Vol. 44. No. 3. IEEE Press, 2016. 
[7] Vasseur, Jean-Philippe, et al. "Dynamic directed acyclic graph (DAG) adjustment." U.S. Patent 
No. 8,489,765. 16 Jul. 2013. 
[8] Wang, Ling, and Hichem Sahbi. "Directed acyclic graph kernels for action recognition." 
Proceedings of the IEEE International Conference on Computer Vision. 2013. 
[9] Antao, Samuel F., et al. "Offloading support for OpenMP in Clang and LLVM." Proceedings of 
the Third Workshop on LLVM Compiler Infrastructure in HPC. IEEE Press, 2016. 
[10] Lee, Juneyoung, et al. "Taming undefined behavior in LLVM." ACM SIGPLAN Notices. Vol. 
52. No. 6. ACM, 2017. 
[11] Horváth, Gábor, and Norbert Pataki. "Clang matchers for verified usage of the C++ Standard 
Template Library." Annales Mathematicae ET Informaticae. Vol. 44. 2015. 
[12] Ross, Scott. "Systems and methods for using alternate computer instruction sets." U.S. Patent 
No. 10,007, 520. 26 Jun. 2018. 

235



  

 

 

[13] Polychroniou, Orestis, Arun Raghavan, and Kenneth A. Ross. "Rethinking SIMD vectorization 
for in-memory databases." Proceedings of the 2015 ACM SIGMOD International Conference on 
Management of Data. ACM, 2015. 
[14] Mantor, Michael J., and Brian Emberling. "SIMD processing unit with local data share and 
access to a global data share of a GPU." U.S. Patent No. 9,619,428. 11 Apr. 2017. 
[15] Plotnikov, Mikhail, and Igor Ermolaev. "Instruction set for eliminating misaligned memory 
accesses during processing of an array having misaligned data rows." U.S. Patent No. 9,910,670. 6 
Mar. 2018. 

236


	1. Introduction
	2. Misaligned data processing strategy
	3. Implementation of misaligned data processing technology
	4. Results
	5. Conclusion
	References



